
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tcon20

Download by: [Sharif University of Technology] Date: 16 July 2016, At: 21:10

International Journal of Control

ISSN: 0020-7179 (Print) 1366-5820 (Online) Journal homepage: http://www.tandfonline.com/loi/tcon20

Distributed model predictive control with
hierarchical architecture for communication:
application in automated irrigation channels

Alireza Farhadi & Ali Khodabandehlou

To cite this article: Alireza Farhadi & Ali Khodabandehlou (2016) Distributed model
predictive control with hierarchical architecture for communication: application in
automated irrigation channels, International Journal of Control, 89:8, 1725-1741, DOI:
10.1080/00207179.2016.1145358

To link to this article: http://dx.doi.org/10.1080/00207179.2016.1145358

Accepted author version posted online: 27
Jan 2016.
Published online: 12 Feb 2016.

Submit your article to this journal

Article views: 33

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tcon20
http://www.tandfonline.com/loi/tcon20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207179.2016.1145358
http://dx.doi.org/10.1080/00207179.2016.1145358
http://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00207179.2016.1145358
http://www.tandfonline.com/doi/mlt/10.1080/00207179.2016.1145358
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2016.1145358&domain=pdf&date_stamp=2016-01-27
http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2016.1145358&domain=pdf&date_stamp=2016-01-27

INTERNATIONAL JOURNAL OF CONTROL,
VOL. , NO. , –
http://dx.doi.org/./..

Distributedmodel predictive control with hierarchical architecture for
communication: application in automated irrigation channels

Alireza Farhadi and Ali Khodabandehlou

Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran

ARTICLE HISTORY
Received February
Accepted January

KEYWORDS
Distributed model predictive
control; large-scale linear
systems; networked control
system optimisation

ABSTRACT
This paper is concerned with a distributedmodel predictive control (DMPC) method that is based on
a distributed optimisation method with two-level architecture for communication. Feasibility (con-
straints satisfaction by the approximated solution), convergence and optimality of this distributed
optimisation method are mathematically proved. For an automated irrigation channel, the satisfac-
tory performance of the proposedDMPCmethod in attenuation of the undesired upstream transient
error propagation and amplification phenomenon is illustrated and comparedwith the performance
of another DMPCmethod that exploits a single-level architecture for communication. It is illustrated
that the DMPC that exploits a two-level architecture for communication has a better performance by
better managing communication overhead.

1. Introduction

1.1 Motivation and background

In large-scale systems, the total number of constraints
and decision variables can be very large. In many cases,
this means the computation overhead (the time spent
computing the optimal solution) using centralised model
predictive control methods at each receding horizon
may not be practical. Towards overcoming this computa-
tional scalability problem, in Stewart, Venkat, Rawlings,
Wright, and Pannocchia (2010), a distributed model pre-
dictive control (DMPC)method for solving a constrained
linear quadratic (LQ) optimal control problem with a
single-level architecture for communication is proposed
which exploits the computational power often available
at each sub-system in the network. This distributed con-
trolmethod consists of two steps: (1) initialisation and (2)
iterated (parallel) computation and communication for
exchanging updates of components of the overall decision
variable between distributed computing resources.

To provide scope for managing the communication
overheads, the authors of Stewart, Venkat, Rawlings,
Wright, and Pannocchia (2010) proposed in Stewart,
Venkat, Rawlings, and Wright (2010) a distributed opti-
misation method that exploits a hierarchical (two-level)
architecture for communication (see Figure 1) and a
three-step algorithm including an extra outer iterate step.

CONTACT Alireza Farhadi afarhadi@sharif.edu

The distributed decision-makers are grouped into q dis-
joint (non-overlapping) neighbourhoods. Exchange of
information between decision-makers within a neigh-
bourhood occurs after each update, whereas the exchange
of information between neighbourhoods is limited to be
less frequent. Within a neighbourhood, each decision-
maker frequently updates its local component of the over-
all decision variable by solving an optimisation prob-
lem of reduced size. The updated value is then com-
municated to all other neighbouring decision-makers.
This intra-neighbourhood update and communication
is referred as an inner iterate. In addition to inner iter-
ates, updates of decision variables from other neigh-
bourhoods are received periodically. These are referred
to as outer iterates. Between outer iterates, distributed
decision-makers continue to compute and refine the
local approximation of the optimal solution, with fixed
values for decision variables from outside the neigh-
bourhood. In Stewart, Venkat, Rawlings, Wright, and
Pannocchia (2010), the authors mathematically proved
feasibility (constraints satisfaction by the approximated
solution), convergence and optimality of the two-step
algorithm. However, in Stewart, Venkat, Rawlings, and
Wright (2010), the authors assumed these properties for
the three-step optimisation algorithm, and they did not
provide any mathematical proofs for feasibility, conver-
gence and optimality under the hierarchical exchange of
updates.

© Informa UK Limited, trading as Taylor & Francis Group

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

http://www.tandfonline.com
http://dx.doi.org/10.1080/00207179.2016.1145358
mailto:afarhadi@sharif.edu

1726 A. FARHADI AND A. KHODABANDEHLOU

Neighborhood
iN

Figure . Two-level architecture for exchanging information
between distributed decision-makers.

1.2 Paper contributions

This paper aims to further develop the results of
Stewart, Venkat, Rawlings, and Wright (2010) by pro-
viding mathematical proofs for feasibility, convergence
and optimality of the distributed optimisation method
presented therein Stewart, Venkat, Rawlings, and Wright
(2010) that exploits a two-level architecture for com-
munication. Then, a DMPC method which is based
on this distributed optimisation method is proposed.
This method is applied to automated irrigation chan-
nel; and the satisfactory performance of this DMPC
method in attenuation of the undesired upstream tran-
sient error propagation and amplification phenomenon
is illustrated and compared with the performance of the
DMPCmethod of Stewart, Venkat, Rawlings,Wright, and
Pannocchia (2010) that exploits a single-level architec-
ture for communication. It is illustrated that the proposed
DMPC method that exploits a two-level architecture for
communication has a better performance by better man-
aging communication overhead.

The literature on the subject of DMPC is quite rich
(Anand, Joshua, Sundaramoorthy, & Samavedham, 2011;
Christofides, Scattolini, Munoz de la Pena, & Liu, 2013;
Doan, Giselsson, & Keviczky, 2013; Giselsson & Rantzer,
2014; Igreja, Cadete, &Lemos, 2011; Liu, Chen,Munoz de
la Pena, & Christofides, 2012; Liu, Munoz de la Pena, &
Christofides, 2010;Maestre,Munoz de la Pena, Camacho,
&Alamo, 2011; Negenborn, 2007; Negenborn, VanOver-
loop, Keviczky, & De Schutter, 2009; Scattolini, 2009). In
Liu et al. (2010), the authors designed a Lyapunov-based
DMPC method for nonlinear systems that take asyn-
chronous measurements and delays into account. In Liu
et al. (2012), the authors designed an iterative Lyapunov-
based DMPC method for large-scale nonlinear systems
subject to asynchronous, delayed state feedback. In com-
parison, the DMPC method of this paper is an iterative

Jacobi-based method that uses a synchronous commu-
nication architecture. In Giselsson and Rantzer (2014),
the authors proposed an iterative dual decomposition
approach for DMPC of linear systems. The authors also
presented a stopping condition to distributed optimisa-
tion algorithm that keeps the number of iterations as
small as possible and gives a feasible, stabilising solution.
There are also many papers that have used DMPC for
irrigation channels, such as Doan et al. (2013), Negen-
born et al. (2009), Igreja et al. (2011), and Anand et al.
(2011). In Doan et al. (2013), the authors presented an
accelerated gradient-based DMPCmethod for linear sys-
tems; and they illustrated a successful application of this
method to the power reference tracking problem of a
hydro power valley system. The hydro power valley sys-
tem may consist of several irrigation channels/rivers and
lakes and exhibits nonlinear and large-scale dynamics
and a globally coupled cost functional that prevents dis-
tributed methods to be applied directly. The authors in
Doan et al. (2013) proposed a linearisation and approxi-
mation technique that enabled them to apply the devel-
oped gradient-based DMPC method for power refer-
ence tracking of hydro power valley systems. In terms of
application, the control objective of Doan et al. (2013)
is different from the objective of this paper, which is the
improvement of the transient response of automated irri-
gation channels that automatically regulate water levels.
Negenborn et al. (2009), Igreja et al. (2011), and Anand
et al. (2011) also presented DMPC methods for water
level regulation in irrigation channels for delivering the
required amount of water in the right time and place. In
Negenborn et al. (2009), the authors presented the use
of a serial iterative DMPC method for water level reg-
ulation. However, in terms of application, the objec-
tive of Negenborn et al. (2009), Igreja et al. (2011), and
Anand et al. (2011) is different from the objective of this
paper; because unlikeNegenborn et al. (2009), Igreja et al.
(2011), and Anand et al. (2011), this paper presents a
DMPC method as the secondary control layer in addi-
tion of the existing first control layer, which automates
the irrigation channels, to improve the performance of
the existing automated irrigation channels. Nevertheless,
Negenborn et al. (2009), Igreja et al. (2011), and Anand
et al. (2011) use a single-layer control via distributed
model predictive methods.

1.3 Notations

Throughout, certain conventions are used: 0 denotes the
zero vector, || · || the Euclidean norm and R denotes the
set of real numbers. ‘=̇’ means ‘by definition is equivalent
to’, N =̇ {1, 2, 3, . . .} and ′ denotes matrix/vector trans-
pose. a � bmeans a > 0 is much smaller than b > 0.

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 1727

1.4 Paper organisation

The paper is organised as follows: Section 2 briefly
describes the distributed optimisationmethod of Stewart,
Venkat, Rawlings, and Wright (2010), and proofs for fea-
sibility, convergence and optimality of this method is pre-
sented in Section 3. In Section 4, the DMPCmethod that
is based on the distributed optimisation method of Stew-
art, Venkat, Rawlings, andWright (2010) is presented and
in Section 5 the satisfactory performance of this method
in attenuation of the undesired upstream transient error
propagation and amplification phenomenon in auto-
mated irrigation channels is illustrated and compared
with the performance of the DMPC method of Stew-
art, Venkat, Rawlings, Wright, and Pannocchia (2010).
In Section 6, the paper is concluded by summarising
the contributions of the paper and direction for future
research.

2. Distributed optimisationmethod with
hierarchical architecture for communication

The distributed optimisation method of Stewart, Venkat,
Rawlings, and Wright (2010) is concerned with n inter-
acting sub-systems: S1, S2,… , Sn each equipped with
a decision-maker with limited computational power for
solving the following optimisation problem

min
(u1,...,un)

{
J(g, u1, . . . , un), ui ∈ U i, ∀i

}
. (1)

Here, g is a collection of known vectors, J � 0 is a finite-
horizon quadratic cost functional of decision variables
with horizon length N, for each i = 1, 2,… , n, ui ∈ R

Nmi

is the decision variable associated with sub-system Si and
Ui is a closed convex subset of the Euclidean space R

Nmi

that includes zero vector.
For the simplicity of presentation, without loss of gen-

erality, the dependency of the cost functional J on g
is dropped. Throughout, it is assumed that decision-
makers have knowledge of known parameters described
by g and also the expression for the cost functional J in
(1). To manage the communication overhead, the dis-
tributed optimisation method of Stewart, Venkat, Rawl-
ings, and Wright (2010) uses a two-level architecture for
exchanging information between distributed decision-
makers. This communication architecture involves a col-
lection of disjoint neighbourhoods of sub-systems (see
Figure 1). In each neighbourhood, at least one decision-
maker is selected as the neighbourhood cluster head such
that all the sub-systems of the neighbourhood and also
all the sub-systems of the nearest neighbouring neigh-
bourhood are within the effective communication range

of the neighbourhood cluster head so that the com-
munication graph between cluster heads is connected.
That is, there is a communication path between a clus-
ter head to any other cluster heads. A simple communi-
cation architecture is obtained by implementing a time
division multiple access (TDMA)/orthogonal frequency
division multiple access (OFDMA) scheme (Goldsmith,
2005) as follows: decision-makers in different neighbour-
hoods broadcast their updated decision variables simul-
taneously without collision using the OFDMA scheme;
and within a neighbourhood, decision-makers exchange
their updated decision variables without collision using
the TDMA scheme. The coordination between cluster
heads is also achieved by implementing a TDMA scheme
as proposed in Farhadi, Dower, and Cantoni (2013). This
is a synchronous communication. Asynchronous com-
munication is also possible via exchanging flags between
decision-makers. When a decision-maker receives all
the required information from all other decision-makers
in its neighbourhood, it broadcasts a flag to all other
decision-makers in its neighbourhood to inform them
that it is ready to update its decision variable. Also, when
this decision-maker receives flags of all other decision-
makers in its neighbourhood, it knows that it is time
to update its decision variable. Similarly, asynchronous
communication between cluster heads is possible via
exchanging flags between cluster heads.

Without loss of generality, suppose sub-systems S1,
S2,… ,Sn are distributed into q disjoint neighbourhoods,
as follows: N1 = {S1, . . . , Sl1}, N2 = {Sl1+1, . . . , Sl2},… ,
Nq = {Slq−1+1, . . . , Sn}. Then, the distributed optimisa-
tion method of Stewart, Venkat, Rawlings, and Wright
(2010) approximates the solution of the optimisation
problem (1) by taking the following three steps:

� Initialisation: the information exchange between
neighbourhoods at outer iterate t � {0, 1, 2, …}
makes it possible for every sub-systemSi to initialise
its local decision variable as h0i = uti ∈ R

Nmi, i ∈
{1, . . . , n}, where u0i ∈ Ui are chosen arbitrarily at
t = 0.

� Inner iterate: between every two successive outer
iterates there are p̄ inner iterates. Every sub-system
Si of the neighbourhood Ne (e = 1, 2,… , q) per-
forms p̄ inner iterates simultaneously with other
sub-systems, as follows.
For each inner iterate p ∈ {0, 1, . . . , p̄− 1}, sub-
system Si first updates its decision variable via

hp+1
i = πih∗

i + (1 − πi)h
p
i , (2)

where π i are chosen subject to πi > 0,
∑l1

j=1 π j =
1, . . . ,

∑n
j=lq−1+1 π j = 1 and h∗

i =̇ argminhi∈Ui
J(h01,

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

1728 A. FARHADI AND A. KHODABANDEHLOU

. . . , h0le−1
, hp

le−1+1, . . . , hi, . . . , hp
le, h0le+1, . . . , h0n)

(note that l0 = 0, lq = n). Then, it trades its updated
decision variable hp+1

i with all other sub-systems in
its neighbourhoodNe.

� Outer iterate: after p̄ inner iterates, there is an outer
iterate update as follows:

ut+1
i = λih

p̄
i + (1 − λi)uti , (3)

where uti = (ut ′i [0] ut
′
i [1] . . . ut ′i [N − 1])′ ∈ R

Nmi ,
uti [j] ∈ R

mi , j = 0, 1, 2,… , N − 1, and λi, i = 1,
2,… , n, are chosen subject to λi > 0, λ1 = · · · =
λl1, λl1+1= · · ·=λl2, . . . , λlq−1+1= · · ·=λlq (λlq=λn),
λl1 + λl2 + · · · + λlq = 1. Then, there is an outer
iterate communication, in which the updated
decision variables ut+1

i are shared between all
neighbourhoods; and subsequently, between all
sub-systems.

As will be shown in the next section, by increasing t,
(ut1, ut2, . . . , utn) converges to (u∗

1, u∗
2, . . . , u∗

n), which is
the optimal solution of the optimisation problem (1).
Hence, for a large enough t̄ , (ut̄1, ut̄2, . . . , ut̄n) is an approx-
imation of the optimal solution.

We now define communication overhead, computa-
tion overhead and computational latency of the above
three-step algorithm as follows.

Definition 2.1 (Communication overhead): Communi-
cation overhead is defined as the total time spent for
exchanging information between distributed decision-
makers for approximating the solution of the optimisa-
tion problem (1) by ut̄i .

Definition 2.2 (Computation overhead): At a given
inner iteration, define the decision-maker with the
longest processing time as the dominating decision-
maker at this iteration. Then, computation overhead is
defined as the summation of the processing times of the
dominated decision-maker for approximating the solu-
tion of the optimisation problem (1) by ut̄i .

Definition 2.3 (Computational latency): Computa-
tional latency is the summation of the communication
overhead and computation overhead.

Remark 2.1: For the one neighbourhood case (i.e., q= 1,
p̄ = 1), the above three-step algorithm is reduced to the
two-step algorithm of Stewart, Venkat, Rawlings, Wright,
and Pannocchia (2010), in which it only involves the ini-
tialisation step and inner iterate updates (2) with p = t
followed by outer iterate communication.

3. Feasibility, convergence and optimality
results

In this section, it is shown that given a feasible initialisa-
tion (i.e.,u0i ∈ Ui), the iterates (3) are feasible (i.e.,uti ∈ Ui,
t � {0, 1, 2, …}), the cost functional is non-increasing
for each outer iterate (and so converges as t → �), and
the iterates (ut1, . . . , utn) converge to the optimal solu-
tion (u∗

1, . . . , u∗
n) of the constrained optimisation prob-

lem (1). Note that as J � 0 is quadratic and the constraint
sets are convex, there exists a unique optimal solution
(u∗

1, . . . , u∗
n). Feasibility and convergence properties are

shown for a general convex finite-horizon cost functional
J(u1,… , un); however, for optimality, it is also assumed
that the cost functional is quadratic.

Feasibility, convergence and optimality proofs pre-
sented here closely follow those given in Stewart, Venkat,
Rawlings, Wright, and Pannocchia (2010). The changes
which are required to develop new proofs are as follows.

� For feasibility proof, first we need to prove feasibility
of inner iterates, and then feasibility of outer iterates
as proved in Stewart, Venkat, Rawlings, Wright, and
Pannocchia (2010).

� For convergence proof, we need to show that the
cost functional is non-increasing at each inner iter-
ate between each two successive outer iterates in
addition of showing that the cost functional is non-
increasing at each outer iterate as proved in Stewart,
Venkat, Rawlings, Wright, and Pannocchia (2010) .

� For optimality proof, as we consider the general case
with n sub-systems subject to inner and outer iter-
ates update and communication, a more detailed
and complicated proof must be presented compared
with the proof presented in Stewart et al. (2010) for
optimality, which is concerned with a system with
only two sub-systems subject to outer iterates update
and communication.

Proposition 3.1 (Feasibility): Given the above convex
finite-horizon cost functional J, convex control constraint
setsUi and a feasible initialisation, the inner and outer iter-
ates (2) and (3) are feasible.

Proof: By assumption, the initialisation, h0i = u0i is feasi-
ble. Since U1,… , Un are convex, the convex combination
(2) with p = 0 implies that (h11, . . . , h1n) is feasible. Fea-
sibility for p ∈ {1, . . . , p̄− 1} follows similarly by induc-
tion. Now as u0i and hp̄

i are feasible, the convex combi-
nation (3) with t = 0 implies that (u11, . . . , u1n) is feasi-
ble. Subsequently, the feasibility for t > 1 and each p ∈
{0, 1, . . . , p̄− 1} between every two successive outer iter-
ates follows similarly. �

Next we show the convergence of the cost functional J
under the solution (3).

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 1729

Proposition 3.2 (Convergence): Given a feasible initiali-
sation, convex finite-horizon cost functional J(ut1, . . . , utn)
is non-increasing at each outer iterate t � {0, 1, 2, …} and
converges as t → �.
Proof: For each t � {0, 1, 2, …}, the cost functional sat-
isfies the following:

J(ut+1
1 , . . . , ut+1

n)

= J
(
λl1 (h

p̄
1, . . . , h

p̄
l1 , u

t
l1+1, . . . , u

t
n) + · · ·

+ λlm (ut1, . . . , u
t
lm−1

, hp̄
lm−1+1, . . . , h

p̄
lm , utlm+1, . . . , u

t
n)

+ · · · + λlq (u
t
1, . . . , u

t
lq−1

, hp̄
lq−1+1, . . . , h

p̄
n)

)
≤ λl1 J(h

p̄
1, . . . , h

p̄
l1 , u

t
l1+1, . . . , u

t
n) + · · ·

+ λlm J(u
t
1, . . . , u

t
lm−1

, hp̄
lm−1+1, . . . , h

p̄
lm , utlm+1, . . . , u

t
n)

+ · · · + λlq J(u
t
1, . . . , u

t
lq−1

, hp̄
lq−1+1, . . . , h

p̄
n), (4)

where the equality follows from (3), and the inequality
follows from the convexity of the cost functional. Now,
define

Jm =̇ J(ut1, . . . , u
t
lm−1

, hp̄
lm−1+1, . . . , h

p̄
lm, utlm+1, . . . , u

t
n),

m ∈ {1, 2, . . . , q}, (5)

whereby it is understood that J1 = J(hp̄
1, . . . , h

p̄
l1,

utl1+1, . . . , u
t
n) and Jq = J(ut1, . . . , utlq−1

, hp̄
lq−1+1, . . . , h

p̄
n).

Note that lq = n.
Then, Jm satisfies the following bound:

Jm = J
(
ut1, . . . , u

t
lm−1

, πlm−1+1(h∗
lm−1+1, h

p̄−1
lm−1+2,, h

p̄−1
lm)

+ · · · + πlm (hp̄−1
lm−1+1, . . . , h

p̄−1
lm−1, h

∗
lm), utlm+1, . . . , u

t
n
)

≤ πlm−1+1J(ut1, . . . , u
t
lm−1

, h∗
lm−1+1, h

p̄−1
lm−1+2, . . . , h

p̄−1
lm ,

utlm+1, . . . , u
t
n) + · · · + πlm J

(
ut1, . . . , u

t
lm−1

,

hp̄−1
lm−1+1, . . . , h

p̄−1
lm−1, h

∗
lm, utlm+1, . . . , u

t
n
)

≤
⎛
⎝ lm∑

j=lm−1+1

π j

⎞
⎠ J

(
ut1, . . . , u

t
lm−1

, hp̄−1
lm−1+1, . . . ,

hp̄−1
lm , utlm+1, . . . , u

t
n
)

= J(ut1, . . . , u
t
lm−1

, hp̄−1
lm−1+1, . . . , h

p̄−1
lm , utlm+1, . . . , u

t
n),

where h∗
lm−1+1, h

∗
lm−1+2, . . . h

∗
lm have been generated at inner

iterate p̄, the first equality follows from (2) for p = p̄,
the first inequality follows from the convexity of the cost
functional, the second inequality follows from the fact
that the cost functional J for h∗

j , j = lm − 1 + 1,… ,lm, is
not greater than J for hp̄−1

j , and the second equality fol-
lows from the fact that

∑lm
j=lm−1+1 π j = 1. By following a

similar argument, it can be shown for m � {1, 2,… , q}

that

Jm ≤ J(ut1, . . . , u
t
lm−1

, hp̄−1
lm−1+1, . . . , h

p̄−1
m , utlm+1, . . . , u

t
n)

≤ J(ut1, . . . , u
t
lm−1

, hp̄−2
lm−1+1, . . . , h

p̄−2
lm , utlm+1, . . . , u

t
n)

≤ · · · ≤ J(ut1, . . . , u
t
n). (6)

Consequently, from (4) and (6) it follows that

J(ut+1
1 , . . . , ut+1

n) ≤
(
λl1 + λl2 + · · · + λlq

)
J(ut1, . . . , u

t
n)

= J(ut1, . . . , u
t
n).

That is, the cost J(ut1, . . . , utn) is non-increasing at each
outer iterate t. Hence, the non-negative cost functional J
converges as t → � by the monotone convergence theo-
rem (Billingsley, 1986).

Now, in the following proposition, using the contra-
diction argument, we show that the convergent point
J̄ is the optimal value of the cost functional, i.e., J̄ =
J(u∗

1, . . . , u∗
n); and the iterates (ut1, . . . , utn) converge to

the unique optimal solution (u∗
1, . . . , u∗

n), as t → �. �
Proposition 3.3 (Optimality): Given a feasible initiali-
sation, strictly convex and quadratic cost J, and closed
convex control constraint sets Ui, the cost J(ut1, . . . , utn)
converges to the optimal cost J(u∗

1, . . . , u∗
n), and the iter-

ates (ut1, . . . , utn) converge to the unique optimal solution
(u∗

1, . . . , u∗
n), as t → �.

Proof: For the clarity of the proof, we first present the
sketch of the proof. From the convergence result, it
follows that the cost converges to some J̄ ≥ 0 and all
iterates belong to a sequentially compact set. Hence,
there must exist one sub-sequence (ut1, . . . , utn)t∈T , T ⊂
{1, 2, 3, . . .} and an accumulation point (ū1, . . . , ūn),
such that this sub-sequence converges to this point.
Then, using a contradiction argument it is shown that
this accumulation point must be the optimal solution.
Now, as this point is an arbitrary accumulation point
and (ut1, . . . , utn)t∈T is also an arbitrary convergent sub-
sequence of the sequence (ut1, . . . , utn)t≥0, from the above
analysis, it is concluded that every convergent sub-
sequence of the sequence (ut1, . . . , utn)t≥0 converges to
the same limit, which is the optimal solution. Therefore, it
must be the case that the entire sequence (ut1, . . . , utn)t≥0
with the property of limt→∞ J(ut1, . . . , utn) = J̄ which is
made of convergent sub-sequences, converges to the opti-
mal solution.

Now, the details of the proof are as follows. From
Proposition 3.2, it follows that the cost converges to some
J̄ ≥ 0. Because J is quadratic and strictly convex, its sub
level sets Lev�a(J) are compact and bounded for all a� 0.
Therefore, all iterates belong to the compact and bounded
set Lev≤J(u01,...,u0n)(J) ∩ U1 × · · · × Un. Hence, there is at

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

1730 A. FARHADI AND A. KHODABANDEHLOU

least a sub-sequence T ⊂ {1, 2, 3, . . .} and one accumu-
lation point (ū1, . . . , ūn), such that (ut1, . . . , utn)t∈T con-
verge to (ū1, . . . , ūn) and limt∈T ,t→∞ J(ut1, . . . , utn) =
J(ū1, . . . , ūn) = J̄.

Suppose for the purpose of contradiction that
J̄ = J(u∗

1, . . . , u∗
n), and therefore (ū1, . . . , ūn) =

(u∗
1, . . . , u∗

n). Because J(.) is convex, we have

∇J(ū1, . . . , ūn)′(U ∗ − Ū) ≤ �J =̇ J(u∗
1, . . . , u

∗
n)

− J(ū1, . . . , ūn), (7)

where U ∗ = (
u∗′
1 . . . u∗′

n
)′ and Ū = (

ū′
1 . . . ūn′)′.

�J can be partitioned as follows: ∇J(ū1, . . . , ūn) =(∇u1J(ū1, . . . , ūn)′ . . . ∇unJ(ū1, . . . , ūn)′
)′. Then,

from the inequality (7), it follows that at least one of
∇ui J(ū1, . . . , ūn)′ × (u∗

i − ūi) must be less than or
equal to �J

n . For simplicity, without loss of generality,
suppose i = 1. Then, by applying Taylor’s theorem to
J(ut1 + ε(u∗

1 − ut1), ut2, . . . , utn), ϵ> 0, we have

J(ut1 + ε(u∗
1 − ut1), u

t
2, . . . , u

t
n) = J(ut1, . . . , u

t
n)

+ ε∇J(ut1, . . . , u
t
n)

′

⎛
⎜⎜⎜⎜⎜⎜⎝

u∗
1 − ut1
0
.

.

.

0

⎞
⎟⎟⎟⎟⎟⎟⎠

+ O(ε2). (8)

By the definition of the convergence of J(ut1, . . . , utn)
and (ut1, . . . , utn)t∈T there exists a t1 ∈ T , such that
for all t ∈ T so that t � t1, the difference between
J(ut1, . . . , utn) and J(ū1, . . . , ūn) and also the difference
between (ut1, . . . , utn) and (ū1, . . . , ūn) are negligible.
Hence, as∇u1J(ū1, . . . , ūn)′ × (u∗

1 − ū1) ≤ �J
n , for all t�

t1, we have the following inequality:

J(ut1, . . . , u
t
n) + ε∇J(ut1, . . . , u

t
n)

′

⎛
⎜⎜⎜⎜⎜⎜⎝

u∗
1 − ut1
0
.

.

.

0

⎞
⎟⎟⎟⎟⎟⎟⎠

+O(ε2) ≤ J(ū1, . . . , ūn) + ε�J
n

+ O(ε2). (9)

Now, from (4) and (6) it follows that

J(ut+1
1 , ut+1

2 , . . . , ut+1
n) ≤ λl1J1 + λl2J2 + · · · + λlq Jq

≤ J(ut1, u
t
2, . . . , u

t
n),

where Jm, m = 1, 2,… , q, are given in (5). From these
inequalities and as limt∈T ,t→∞ J(ut+1

1 , ut+1
2 , . . . , ut+1

n) =

J̄ and limt∈T ,t→∞ J(ut1, ut2, . . . , utn) = J̄, it follows that

lim
t∈T ,t→∞

(λl1J1 + λl2J2 + · · · + λlq Jq) = J̄. (10)

From (6) and the definition of the convergence of
J(ut1, . . . , utn) it follows that for all t ∈ T so that t �
t1, we have the following inequalities: Jm ≤ J̄, �m �
{1, 2,… , q}. This means that for each m there exists
an ϵm � 0, such that limt∈T ,t→∞ Jm = J̄ − εm. Hence,
from (10), it follows that

∑q
m=1 limt∈T ,t→∞ λlm Jm(= J̄ −∑q

m=1 λlmεm) = J̄. From this equality and as λlm > 0 it
follows that ϵm = 0, �m � {1, 2,… , q} giving the follow-
ing result: limt∈T ,t→∞ Jm = J̄, �m � {1, 2,… , m}. This
result combined with (6) for m = 1 similarly results in
the following:

lim
t∈T ,t→∞

J(hp
1, h

p
2, . . . , h

p
l1, u

t
l1+1, . . . , u

t
n)

= J̄, ∀p ∈ {1, 2, . . . , p̄}. (11)

Now, convexity of J(.) results in the following inequality:

J(h11, h
1
2, . . . , h

1
l1, u

t
l1+1, . . . , u

t
n)

= J(π1(h∗
1, u

t
2, . . . , u

t
l1) + π2(ut1, h

∗
2, . . . , u

t
l1) + · · ·

+ πl1 (u
t
1, u

t
2, . . . , h

∗
l1), u

t
l1+1, . . . , u

t
n)

≤ π1J(h∗
1, u

t
2, . . . , u

t
n) + π2J(ut1, h

∗
2, . . . , u

t
n) + · · ·

+ πl1J(u
t
1, . . . , h

∗
l1, u

t
l1+1, . . . , u

t
n)

≤ (π1 + π2 + · · · + πl1)J(u
t
1, . . . , u

t
n) = J(ut1, . . . , u

t
n),

where h∗
1 = argminh1∈U1

J(h1, ut2, . . . , utn) and h∗
2,…,h∗

l1
are defined similarly. Consequently, from (11) and as
π1, π2, . . . , πl1 > 0, it follows from a similar argument
that

lim
t∈T ,t→∞

J(h∗
1, u

t
2, . . . , u

t
n) = J̄. (12)

Now, consider the left-hand side of (8). As U1 is a con-
vex set and ut1 + ε(u∗

1 − ut1) = (1 − ε)ut1 + εu∗
1 is a con-

vex combination of ut1, u∗
1 ∈ U1 for ϵ � (0, 1], it follows

for ϵ � (0, 1] that ut1 + ε(u∗
1 − ut1) ∈ U1. Hence, as h∗

1 =
argminh1∈U1

J(h1, ut2, . . . , utn), it is evident for ϵ � (0, 1]
that J(h∗

1, ut2, . . . , utn) ≤ J(ut1 + ε(u∗
1 − ut1), ut2, . . . , utn).

Consequently, from (12) for all t ∈ T so that t � t1 the
following inequality holds:

J̄ ≤ J(ut1 + ε(u∗
1 − ut1), u

t
2, . . . , u

t
n). (13)

Hence, from (8), (9) and (13), for sufficiently small
ϵ > 0 and all t ∈ T so that t � t1, it follows that
J̄ ≤ J̄ + ε�J

n . But, as �J < 0, from the inequality J̄ ≤
J̄ + ε�J

n it follows that J̄ < J̄ giving a contradiction.

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 1731

Therefore, by contradiction we have J(ū1, . . . , ūn) = J̄ =
J(u∗

1, . . . , u∗
n) and (ū1, . . . , ūn) = (u∗

1, . . . , u∗
n). Now,

as (ū1, . . . , ūn) was an arbitrary accumulation point
and (ut1, . . . , utn)t∈T was an arbitrary convergent sub-
sequence of the sequence (ut1, . . . , utn)t≥0, from the above
analysis, it is concluded that every convergent sub-
sequence of the sequence (ut1, . . . , utn)t≥0 converges to
the same limit of (u∗

1, . . . , u∗
n). Therefore, it must be the

case that the entire sequence (ut1, . . . , utn)t≥0 with the
property of limt→∞ J(ut1, . . . , utn) = J̄ which is made of
convergent sub-sequences, converges to the optimal solu-
tion (u∗

1, . . . , u∗
n). �

4. Distributedmodel predictive control method

Because the distributed optimisation method of previous
sections is concerned with a convex optimisation prob-
lem with quadratic cost functional of decision variables,
in this section, we propose a DMPC method with lin-
ear dynamics, convex constraint sets and quadratic cost
functional. As will be shown in this section, this DMPC
problem can be written in terms of a convex optimisation
problem with a quadratic cost; and hence, the distributed
optimisation method of previous sections can be used to
solve it.

This section is concerned with a dynamic system
with n distributed interacting linear time invariant sub-
systems Si, i= 1, 2,… , n, of the following form, in which
each of them is equipped with a decision-maker that gen-
erates the decision variable ui.

Si :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xi[k + 1] = Aixi[k] + Biui[k]

+
n∑

j=1, j =i

Mjx j[k] + Nju j[k],

yi[k] = Cixi[k],
zi[k] = Dixi[k],
k = {0, 1, 2, . . .}is the time instant.

(14)

For the system (14), we are concerned with the LQ con-
strained optimal control problem (15) subject to the
dynamics of sub-systems (14) and the operational con-
straints xi[k] ∈ Xi and ui[k] ∈ Gi, where Xi is a closed
convex subset of the real Euclidean space with dimen-
sion ni > 0 (i.e., Xi ⊂ R

ni) modelling constraint set on
the ith state variable; and Gi is a closed convex subset of
R

mi modelling constraint set on the ith decision variable.

min
(u1,u2,...,un)

{JL(x[0], r, u1, . . . , un), ui[k] ∈ Gi, xi[k]

∈ Xi, ∀i, k, subject to(14)} (15)

JL(x[0], r, u1, . . . , un) =
n∑

i=1

L−1∑
k=0

||yi[k] − ri||2Q

+ ||ui[k] − ui[k − 1]||2R + ||zi[k]||2P, (ui[−1] = 0),
(16)

where r =̇ (
r′1 r′2 . . . r′n

)′, ri is the desired value for the
output yi,

x[0] =̇ (
x′
1[0] x′

2[0] . . . x′
n[0]

)′

is the initial state vector, || · || is the Euclidean norm and
Q = Q′ � 0, R = R′ > 0 and P = P′ � 0 are weighting
matrices.
Remark 4.1: As the optimal control problem (15) is a
constrained problem and the horizon length L is long, the
receding horizon idea must be used to solve this prob-
lem. That is, at each time instant k, the following asso-
ciated optimal control problem with the cost functional
(17) with the horizon length N � Lmust be solved.

min
(u1,u2,...,un)

{J(x[k], r, u1, . . . , un), ui[j] ∈ Gi, xi[j]

∈ Xi, ∀i, j = k, . . . , k + N − 1, subject to(14)}

J(x[k], r, u1, u2, . . . , un) =
n∑

i=1

k+N−1∑
j=k

||yi[j] − ri||2Q

+ ||ui[j] − ui[j − 1]||2R + ||zi[j]||2P. (17)

The solution to this optimal control problem is the vec-
tors

u∗
i = (

u∗′
i [k] u∗′

i [k + 1] . . . u∗′
i [k + N − 1]

)′
, i = 1, 2, . . . , n,

inwhich only the first components, i.e.,u∗
i [k]s, are applied

by distributed decision-makers and this procedure is
repeated for the next time instant. Note that in the pro-
posed method at each time instant k, xi[k], i = 1, 2,… ,
n, are measured and shared between all decision-makers
so that at each receding horizon xi[k]s are known to each
decision-maker.

By expanding the dynamic model (14) in terms of
x[k] =̇ (

x′
1[k] x′

2[k] . . . x′
n[k]

)′ and the decision vari-
ables ui[j]s, j = k, k + 1,… , k + N − 1, and substituting
xi[j], yi[j] and zi[j] rewritten in terms of x[k] and deci-
sion variables ui[j] in the cost functional (17), it is writ-
ten as a quadratic function of decision variables. Further-
more, as Xi, i = 1, 2,… , n, are closed convex sets, their
Cartesian productX1 × X2 × · · · × Xn is a closed convex
set (Boyd&Vandenberghe, 2004). Consequently, as affine

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

1732 A. FARHADI AND A. KHODABANDEHLOU

functions preserves closeness and convexity of sets (Boyd
& Vandenberghe, 2004), the closed convex state con-
straint setXi on the time invariant dynamics (14) imposes
additional constraint on decision variables. That is, ui ∈
Hi(x[k]). Therefore, for each i, the set of control con-
straint for the associated LQ problem with the cost func-
tional (17) is (ui ∈)Gi ∩ Hi(x[k]), where Gi ∩ Hi(x[k]) is
a closed convex set. Hence, the optimisation problem of
the previous sections with g= (x[k], r) is applicable to the
associated LQ problem with the cost functional (17).

Having that, in the proposed DMPC method, at each
receding horizon with horizon length N, the distributed
optimisation method of previous sections is used with
t = {0, 1, 2, . . . , t̄ − 1} to solve the associated LQ prob-
lem. The initialisation of the distributed optimisation
method at each receding horizon is based on the warm
start. That is, at time instant k + 1, the initialisation is as
follows:

u0i = (
ut̄ ′i [k + 1] ut̄ ′i [k + 2] . . . ut̄ ′i [k + N − 1] 0′)′

,

where ut̄i [k + j] ∈ R
mi , j = 0, 1, 2,… , N − 1, are the

solution of the distributed optimisation problem at the
previous time instant k. Note that at time instant k = 0,
u0i ∈ Ui, i = 1, 2,… , n, are chosen arbitrary. Then, for
each time instant k, the three-step optimisation algorithm
of the previous sections are repeated t̄ times until the vec-
tors ut̄i = (ut̄ ′i [k] ut̄

′
i [k + 1] . . . ut̄ ′i [k + N − 1])

′, i = 1,
2,… , n, are generated, inwhich only the first components
ut̄i [k]s are applied to the distributed dynamic system by
distributed decision-makers.

Remark 4.2: To guarantee the recursive feasibility, the
proper terminal constraints can be included to each asso-
ciated LQ problem with horizon length N (Kearney and
Cantoni, 2012).

5. Automated irrigation channels and undesired
upstream transient error propagation and
amplification phenomenon

To illustrate the satisfactory performance of the above
DMPC method with two-level architecture for commu-
nication, this method is applied in this section to an auto-
mated irrigation channel and its satisfactory performance
in attenuating the undesired upstream transient error
propagation and the amplification phenomenon is illus-
trated and compared with the performance of the DMPC
method of Stewart, Venkat, Rawlings, Wright, and Pan-
nocchia (2010) that exploits a single-level architecture for
communication.

5.1 An automated irrigation channel

An automated irrigation channel consists of a collec-
tion of interconnected pools (see Figure 2). Each pool
is equipped with an overshot gate, a modem for wire-
less communication, sensors, actuators and a process-
ing device (decision-maker). Open irrigation channels
have been traditionally modelled by the St Venant equa-
tions which are nonlinear hyperbolic partial differen-
tial equations (Chaudhry, 1993). However, as shown
in Weyer (2001), Ooi, Krutzen, and Weyer (2005),
around desired set points open irrigation channels can
be modelled with high accuracy by linear dynamics
using mass-balance principle and system identification
techniques. Because, in this section, the objective is
to maintain the downstream water levels of open irri-
gation channels pools around desired set points with
small variation, linear model is used for open irrigation
channels.

The dynamics of each sub-system (pool) in an auto-
mated irrigation channel in continuous time domain
is described as follows (see Figure 2) (Cantoni et al.,

Figure . An automated irrigation channel.

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 1733

2007):

ẏi(t) = Cin
i zi(t − τi) +Cout

i zi+1(t) +Cout
i di(t), i = 1, 2, . . . , n,

zi =̇ h
3
2
i , hi = yi−1 − pi, zi+1 =̇ h

3
2
i+1, hi+1 = yi − pi+1,

di = d̄i
γi+1

, dn = d̄n
γn

, (18)

where αi > 0 (measured in metre square – m2) is a con-
stant which depends on the pool surface area, yi � 0
(measured in metre Above Height Datum – mAHD) is
the downstream water level at the ith pool, hi � 0 (mea-
sured in metre) is the head over upstream gate (the ith
gate), hi + 1 is the head over downstream gate (the i+ 1th
gate), pi � 0 (measured inmetre) is the position of the ith
gate, τ i (measured inminutes) is the fixed transport delay,
d̄i ≥ 0 (measured inmeter cube perminutes –m3/min) is
the off-take flow rate disturbance taken at the end of pool
i by user, and γ i as well as Cin

i (measured in m
−1
2 /min)

andCout
i (measured inm− 1

2 /min) are constant.
Equation (18) can be written in terms of the storage

(integrator) equation (19) and transport (delay) equation
(20), as follows:

ẏi(t) = Cin
i z̃i(t) +Cout

i zi+1(t) +Cout
i di(t). (19)

z̃i(t) = zi(t − τi). (20)

The storage equation (19) can be directly converted to
discrete time model using the zero-order hold technique,
while the transport equation (20) is converted to dis-
crete time model by introducing τi

T states as follows
xi,2(kT) = zi(kT − τi

T), . . . , xi, τi
T +1(kT) = zi(kT − T),

where the sampling period T is the biggest common fac-
tor of pools transport delays (note that xi, 1(kT) = yi(kT),
k � {1, 2, 3, …}). Following the above conversions, the
equivalent discrete time model describing the dynam-
ics of the ith sub-system/pool is given by the following
discrete time state space model with the state variable
bi[k]:

{
bi[k + 1] = Ǎibi[k] + B̌izi[k] + Ďizi+1[k] + F̌idi[k],

yi[k] = Čibi[k] i = 1, 2, . . . , n.

In an automated irrigation channel, PI controllers
zi(s) = Ci(s)ei(s), Ci(s) = KiTis+Ki

TiFis2+Tis
, ei = ui − yi are

designed to stabilise an automated irrigation channel
around the pre-defined reference signals uis by attenu-
ating the effects of off-take flow disturbances. Now, by
finding the corresponding discrete time transfer function
Ci(z) and then the corresponding state-space representa-
tion, we have the following discrete time representation

for the PI controllers:

{
ξi[k + 1] = Āiξi[k] + B̄iei[k], ξi[0] = 0,
zi[k] = C̄iξi[k].

Consequently, by defining the augmented state variable
xi[k] =

(
bi[k]
ξi[k]

)
, the dynamics of the automated irrigation

network is given by (21).

Si :

⎧⎨
⎩
xi[k + 1] = Aixi[k] + Biui[k] + Fidi[k] + vi[k],
yi[k] = Cixi[k],
zi[k] = Dixi[k],

(21)

for i = 1, 2,… , n and k � {0, 1, 2,… , }. In the above
dynamicmodel, vi[k]=Mixi + 1[k] represents the cascade
interconnection, xi ∈ R

ni is the state variable of dimen-
sion ni ∈ N =̇ {1, 2, 3, . . .}, ui ∈ R is the reference set
point, yi ∈ R and zi ∈ R are variables to be controlled,
and di ∈ R is a known off-take disturbance for the ith
sub-system.

For the purpose of illustration, in this section, we con-
sider an automated irrigation channel consisting of pools
2, 5, 8 and 9 of the East Goulburn main irrigation chan-
nel located in Victoria, Australia. Numerical values for
parameters describing these automated pools are given in
Table 1 (Kearney & Cantoni, 2012).

Figure 3 illustrates the response of this automated
irrigation channel to an off-take disturbance with the
value of d̄4 = 8 m3

min applied to the last pool (pool 9 of
the East Goulburn irrigation channel) for the first 135
minute (note that for simulations, the desired steady
state values for water levels are set to be 1 m above
datum in Figure 2 and for simulations the datum for the
water levels is moved to the desired steady-state water
levels).

Figure 3 illustrates the upstream transient error prop-
agation and the amplification phenomenon due to inter-
play between off-take flow disturbance and transport
delay in automated irrigation channels. At their worst,
the undesirable transient characteristics can result in
instability and performance degradation due to actua-
tor limitations. One way to mitigate such effect is to
equip automated irrigation channels with a supervisory
controller that properly manages reference set points uis
of local PI controllers by solving a quadratic constrained
optimal control problem (Kearney & Cantoni, 2012). To
formulate this problem, we use the following augmented

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

1734 A. FARHADI AND A. KHODABANDEHLOU

Table . Numerical values for parameters describing automated pools , , and of the East
Goulburn main irrigation channel (Kearney & Cantoni,).

Pool Cini (m
−1/2

min) Couti (m
−1/2

min) τ i(min) γi(
m3

min) Ki Ti Fi

 (pool of the East Goulburn) . −. . .
 (pool of the East Goulburn) . −. . .
 (pool of the East Goulburn) . −. . .
 (pool of the East Goulburn) . −. . . .

0 500 1000 1500 2000 2500 3000
-5

-4

-3

-2

-1

0

1
disturbance effect on the water level of the pools

Minute

w
a
te

r
le

v
e
l(

c
m

)

pool1
pool2
pool3
pool4

Figure . The upstream transient error propagation and amplifi-
cation phenomenon.

state-space representation for the distributed dynamic
model (21):

⎧⎨
⎩
x[k + 1] = Ax[k] + Bu[k] + Fd[k],
y[k] = Cx[k],
z[k] = Dx[k],

(22)

where

x[k] = (
x′
1[k] x′

2[k] . . . x′
n[k]

)′
,

u[k] = (
u1[k] u2[k] . . . un[k]

)′
,

d[k] = (
d1[k] d2[k] . . . dn[k]

)′
,

y[k] = (
y1[k] y2[k] . . . yn[k]

)′
,

z[k] = (
z1[k] z2[k] . . . zn[k]

)′
.

As the supervisory controller can have a larger time step
than the time step of local PI controllers, which is set to
be T = 1 minute for simulation study, the time step for
supervisory controller is set to be ST, S ∈ N. Hence, the
dynamic model for supervisory controller is obtained by
taking the model re-sampling approach, which involves
holding the inputs to the system constant for the whole
new sample period, and aggregating the dynamic (22)

across the new sample period, as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x[k + 1] = ASx[k] +
⎛
⎝ S−1∑

j=0

AS− j−1B

⎞
⎠ u[k]

+
⎛
⎝ S−1∑

j=0

AS− j−1Fd[Sk + j]

⎞
⎠ ,

y[k] = Cx[k],
z[k] = Dx[k],
k = {0, 1, 2, 3, . . .}.

(23)

After obtaining the re-sampled model, the number of
states in the re-sampled model (23) is reduced while
maintaining the input–output behaviour using balanced
truncation (Zhou, Doyle, & Glover, 1996). Consequently,
the obtained reduced model for the supervisory con-
troller has the following representation:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x̂[k + 1] = Âx̂[k] + B̂u[k] + d̂[k],
y[k] = Ĉx̂[k],
z[k] = D̂x̂[k],
k = {0, 1, 2, 3, . . .},

(24)

where d̂[k] represents the effect of known off-take distur-
bances on the reduced model. Now, the supervisory con-
troller manages reference set points uis of local PI con-
trollers by solving the following quadratic constrained
optimal control problem (Kearney & Cantoni, 2012):

min
u=(u1,...,un)

JL(x̂[0], d̂L−1
0 , r, u)

subject to (24) and
{
yi[k] ∈ [Wi,Hi], ui[k] ∈ [Wi,Hi]

zi[k] ∈ [Ei,Zi]

}
×∀i ∈ [1, n], k ∈ [0, L − 1], (25)

where L is ameasure of irrigation season length, the inter-
val [Wi, Hi] is the admissible region for water-levels yis
and also decision variables uis, the interval [Ei, Zi] is the
admissible region for variable zi which is a measure of
water flow rate, and

JL(x̂[0], d̂L−1
0 , r, u) =

n∑
i=1

L−1∑
k=0

||yi[k] − ri||2Q + ||ui[k]

− ui[k − 1]||2R + ||zi[k]||2P (ui[−1] = 0). (26)

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 1735

Here ||.|| denotes the Euclidean norm (i.e.,
||z||2P =̇ z′Pz), x̂[0] is the vector of known ini-
tial states, d̂L−1

0 =̇ {d̂[k]}k=0,1,...,L−1, where d̂[k] =
(d̂′

1[k] . . . d̂′
n[k])

′
is a collection of known vectors

which represent the effects of off-take disturbances,
r = (

r1 . . . rn
)′ is the vector of desired steady-state val-

ues for yis, and Q, P � 0, R > 0 are weighting matrices.
The first norm in the cost functional (26) penalises
deviation of water levels from the corresponding desired
values, and the second norm penalises large changes
in the input vector for the local PI controllers; and,
therefore, it tries to provide a smooth input trajectory.
The last norm tries to minimise the input flow rates as
zis are measures of input flow rates; and therefore, it is
desirable to make them as small as possible to keep water
in reservoir as much as possible.

Remark 5.1: In automated irrigation channels, uis pro-
duced by the optimisation problem (25) are the set points
for the distributed PI controllers. PI controllers are tuned
so that water levels yis follow these set points. Since the
ith water level yi must be within the bound yi � [Wi, Hi]
and is supposed to follow the set point ui, the set point ui
must be limited in the same bound ui � [Wi, Hi].

Remark 5.2: As the optimal control problem (25) is a
constrained problem and the season length L is long, the
receding horizon idea must be used to solve the con-
strained optimal control problem (25). For large-scale
automated irrigation channels (i.e., when n is large),
the computation overhead for solving the optimal con-
trol problem at each receding horizon using centralised
techniques is very large. As shown in Farhadi, Cantoni,
and Dower (2013), the computation overhead using the
centralised technique is of the order of O(n4); while
the overhead using the distributed method with either
a single-level or two-level architecture for communica-
tion is O(n). Hence, for large-scale automated irriga-
tion channels, a practical way to solve the constrained
optimal control problem (25) using full computational
capacity of existing local decision-makers is to implement
the distributed model predictive controller with either
a two-level or single-level architecture for communica-
tion. Using these controllers at each time instant k by
solving a constrained optimisation problem with horizon
length N � L, the set points uis for the time instant k
are obtained and they are applied to automated irrigation
channels by distributed decision-makers.

Remark5.3: In automated irrigation channels, for a given
vector x̂[k] of measured states at time instant k, collec-
tion of known vectors d̂k+N−1

k =̇ {d̂[j]} j=k,...,k+N−1, (N =
min(N̄, L − k)) and vector of desired steady-state values

for references r, the following cost functional:

J(x̂[k], d̂k+N−1
k , r, u) =̇

n∑
i=1

k+N−1∑
j=k

||yi[j] − ri||2Q

+ ||ui[j] − ui[j − 1]||2R + ||zi[j]||2P (27)

subject to the dynamic model (24) is a quadratic function
of inputs ui, i � {1, 2,… , n}, as the dynamic model (24)
for automated irrigation channels are linear. Moreover, as
[Wi, Hi], [Ei, Zi] ⊂ R are closed convex sets, and linear
transformations preserve closeness and convexity (Boyd
& Vandenberghe, 2004), the inputs (i.e., decision vari-
ables) in the following constrained optimisation problem,
belong to closed convex constraint sets. Hence, with g =
(x̂[k], d̂k+N−1

k , r) the following optimisation problem

min
u=(u1,...,un)

J(x̂[k], d̂k+N−1
k , r, u)

subject to (24) and
{
yi[j] ∈ [Wi,Hi], ui[j] ∈ [Wi,Hi]
zi[j] ∈ [Ei,Zi]

}
×∀i ∈ [1, n], j ∈ [k, k + N − 1],

is of the form of the general optimisation problem (1).
Hence, the proposed DMPCmethod can be used to solve
the optimal control problem (25).

5.2 Simulation results

To illustrate the satisfactory performance of the dis-
tributedmodel predictive controller with two-level archi-
tecture for communication in attenuation of the unde-
sired upstream transient error propagation and amplifi-
cation phenomenon, this controller is applied to the auto-
mated irrigation channel with four pools with numeri-
cal values as given in Table 1. The performance of this
controller is also compared with the performance of the
distributed model predictive controller with single-level
architecture for communication (Stewart, Venkat, Rawl-
ings, Wright, and Pannocchia, 2010).

In this section, it is assumed that the above automated
irrigation channel is subject to an off-take disturbance
with the value of d̄4 = 8 m3

min for the first 135 minute (the
first 15 time steps of the supervisory controller). It is also
assumed that x[0] = 0, r = 0, S = 9, L = 240, N̄ = 10,
[Wi, Hi] = [− 0.2m, 0.2m] and [Ei, Zi] = [0, 0.753/2].
Note that by applying balanced truncation, the reduced
model has only 22 states instead of 92 states. Also, a
similar method as used in Kearney and Cantoni (2012) is
used to guarantee the recursive feasibility of DMPCs. To
apply DMPC with two-level architecture for communi-
cation, two neighbourhoods are considered. The first

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

1736 A. FARHADI AND A. KHODABANDEHLOU

0 500 1000 1500 2000
-1

-0.5

0

0.5
water level for the 1st pool

Minute

w
a
te

r
le

v
e
l(

c
m

)

0 500 1000 1500 2000
-2

-1

0

1
water level for the 2nd pool

Minute

w
a
te

r
le

v
e
l(

c
m

)

0 500 1000 1500 2000
-2

-1

0

1
water level for the 3rd pool

Minute

w
a
te

r
le

v
e
l(

c
m

)

0 500 1000 1500 2000
-1

-0.5

0

0.5
water level for the 4th pool

Minute

w
a
te

r
le

v
e
l(

c
m

)
Figure . DMPC with two-level architecture for communication with computational latency of second. Solid line: without computa-
tional latency, dotted line: with latency. As is clear from this figure, there is no mismatch between these two responses; and the mag-
nitude of transient errors between water levels and the desired values decreases as we move towards upstream pools. This indicates
that the DMPC with two-level architecture for communication attenuates the upstream transient error propagation and amplification
phenomenon.

neighbourhood includes the first and the second
decision-makers and the second neighbourhood includes
the third and fourth decision-makers.

Decision-makers in different neighbourhood broad-
cast their updated decision variables simultaneously
without collision, e.g., using the OFDMA scheme (Gold-
smith, 2005). And, within a neighbourhood, decision-
makers exchange their updated decision variables with-
out collision using theTDMAscheme,which allocates 2.5
second to each decision-maker to broadcast its data to all
other decision-makers in its neighbourhood. Hence, the
communication load for each inner iterate communica-
tion is 5 second. However, for outer iterate communica-
tion, multi-hopping is required that induces communi-
cation delay, such that the outer iterate communication
load is 50 second. For the simulation study, p̄ is set to
be 10 and t̄ = 1. Hence, the communication overhead of
the DMPC with two-level architecture for communica-
tion is p̄× 5 + t̄ × 50 = 10 × 5 + 1 × 50 = 100 second,
and the overhead of the DMPCwith single-level architec-
ture for communication is p̄× 50 = 500 second.

To compare the performance of DMPCs with single-
level and two-level communication architectures for
communication in water level regulations, we compare
their responses with computational latency with their
responses without computational latency for water level
regulation; because the responses of both methods for

water level regulation without computational latency are
almost identical.

For simulation purposes,MATLAB quadprog.m solver
is used, which is interfaced via YALMIP (Lofberg, 2004)
to compute the optimal controls numerically. The com-
puter hardware is a Dell Inspiron laptop computer, pro-
cessor: Intel(R) Core (TM) i5 CPU M450 at 2.40 GHz,
with 32 Bits operating system. Note that the compu-
tation overhead calculation in the following simulation
study captures what calculation will be done in parallel
by calculating the computation time of each decision-
maker of a neighbourhood in a given inner iterate
update; and then choosing the computation time of the
decision-maker with the largest computation time as
the computation time of neighbourhood in that inner
iterate.

Figure 4 illustrates the responses of the DMPC with
two-level architecture for communication with and with-
out considering the computational latency. As the com-
putation overhead in average is 13 second, its computa-
tional latency in average is 113 second, which is almost
2/9th of the time step of 9 minute. As is clear from
Figure 4, the response with the computational latency
is the same as the response without latency. This result
is expected because the computational latency here is
almost 4 times smaller than the time step. As is clear
from Figure 4, the magnitude of transient errors between

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 1737

0 500 1000 1500 2000
-0.5

0

0.5

Minute

u
1
(c

m
)

u
1
 for the 1st pool

0 500 1000 1500 2000
-1

0

1

Minute

u
2
(c

m
)

u
2
 for the 2nd pool

0 500 1000 1500 2000
-2

0

2

Minute

u
3
(c

m
)

u
3
 for the 3rd pool

0 500 1000 1500 2000
-1

0

1

Minute

u
4
(c

m
)

u
4
 for the 4th pool

Figure . Set-point trajectories delivered by the DMPC with two-level architecture for communication. Solid line: without computational
latency, dotted line: with latency. As is clear from this figure there is no mismatch between these two trajectories.

water levels and the desired values decreases as we
move towards upstream pools. This indicates that the
DMPC with two-level architecture for communication
attenuates the upstream transient error propagation and
amplification phenomenon. Figure 5 illustrates the set-
point trajectories delivered by the DMPC with two-level
architecture for communication; and Figure 6 illustrates

zis trajectories, which are measures of input flows (input
flow = Cin

i zi) for this case.
Figure 7 illustrates the responses of the DMPC with

single-level architecture for communication with and
without considering the computational latency. Here,
the average computation overhead is 15 second, and
hence the computational latency in average is 515 second.

0 500 1000 1500 2000
-0.5

0

0.5

1

Minute

z
1

z
1
 for the 1st pool

0 500 1000 1500 2000
-0.5

0

0.5

1

Minute

z
2

z
2
 for the 2nd pool

0 500 1000 1500 2000
-2

0

2

4

Minute

z
3

z
3
 for the 3rd pool

0 500 1000 1500 2000
0

1

2

3

Minute

z
4

z
4
 for the 4th pool

Figure . zis (measures of flows between pools delivered by theDMPCwith two-level architecture for communication). Solid line: without
computational latency, dotted line: with latency. As is clear from this figure there is no mismatch between zis for these two cases.

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

1738 A. FARHADI AND A. KHODABANDEHLOU

0 500 1000 1500 2000
-1

-0.5

0

0.5
water level for the 1st pool

Minute

w
a

te
r

le
v
e

l(
c
m

)

0 500 1000 1500 2000
-2

-1

0

1
water level for the 2nd pool

Minute

w
a

te
r

le
v
e

l(
c
m

)

0 500 1000 1500 2000
-4

-2

0

2
water level for the 3rd pool

Minute

w
a

te
r

le
v
e

l(
c
m

)

0 500 1000 1500 2000
-2

-1

0

1
water level for the 4th pool

Minute

w
a

te
r

le
v
e

l(
c
m

)

Figure . The DMPCwith single-level architecture for communication with computational latency of second. Solid line: without com-
putational latency, dotted line: with latency. This figure illustrates that the performance of the case with computational latency (dotted
line) in disturbance rejection is worst than the performance of the case without latency (solid line).

Figure 7 clearly illustrates that the performance of the case
with the computational latency in disturbance rejection is
worst than the performance of the case without the com-
putational latency. For the first pool, the deviation of the
response with computational latency from the response
without latency is up to 0.25 cm, for the second pool is
up to 0.75 cm, for the third pool is up to 1 cm and for the
last pool is up to 1.2 cm. This results is expected because

of large computational latency here. Figure 8 illustrates
the set-point trajectories delivered by the DMPC with
single-level architecture; and Figure 9 illustrates zis for
this case. Figures 4 and 7 illustrate that the DMPC with
two-level architecture has a performance better than the
performance of the DMPC with single-level architecture
by better managing communication overhead. Figure 10
illustrates the response of DMPC with single-level

0 500 1000 1500 2000
-0.5

0

0.5

Minute

u
1
(c

m
)

u
1
 for the 1st pool

0 500 1000 1500 2000
-1

0

1

Minute

u
2
(c

m
)

u
2
 for the 2nd pool

0 500 1000 1500 2000
-5

0

5

Minute

u
3
(c

m
)

u
3
 for the 3rd pool

0 500 1000 1500 2000
-2

0

2

Minute

u
4
(c

m
)

u
4
 for the 4th pool

Figure . Set-point trajectories delivered by the DMPC with single-level architecture for communication. Solid line: without computa-
tional latency, dotted line: with latency.

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 1739

0 500 1000 1500 2000
-1

0

1

Minute

z
1

z
1
 for the 1st pool

0 500 1000 1500 2000
-1

0

1

Minute

z
2

z
2
 for the 2nd pool

0 500 1000 1500 2000
-5

0

5

Minute

z
3

z
3
 for the 3rd pool

0 500 1000 1500 2000
-5

0

5

Minute

z
4

z
4
 for the 4th pool

Figure . zis (measures of flows between pools delivered by the DMPCwith single-level architecture for communication). Solid line: with-
out computational latency, dotted line: with latency.

architecture for communication without computational
latency and with computational latency of 113 second.
From this figure and Figure 4, it follows that for the same
computational latency, the response with computational
latency of theDMPCwith two-level architecture for com-
munication is better than the response of the DMPC
with single-level architecture for communication in

disturbance rejection. This perhaps is due to the extra
flexibility introduced by parameter λi in the DMPC with
two-level architecture for communication.

Now, for the sensitivity analysis of communication
overhead and to quantify the deviation of the response
with computational latency from the ideal response with-
out computational latency, we introduce the sum absolute

0 500 1000 1500 2000
-2

-1

0

1
water level for the 1st pool

Minute

w
a

te
r

le
v
e

l(
c
m

)

0 500 1000 1500 2000
-4

-2

0

2
water level for the 2nd pool

Minute

w
a

te
r

le
v
e

l(
c
m

)

0 500 1000 1500 2000
-4

-2

0

2
water level for the 3rd pool

Minute

w
a

te
r

le
v
e

l(
c
m

)

0 500 1000 1500 2000
-2

-1

0

1
water level for the 4th pool

Minute

w
a

te
r

le
v
e

l(
c
m

)

Figure . The DMPCwith single-level architecture for communicationwith computational latency of second. Solid line: without com-
putational latency, dotted line: with latency.

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

1740 A. FARHADI AND A. KHODABANDEHLOU

Table . SAE for DMPC with two-level architecture for communi-
cation with outer iterate communication load of second, p̄ =
10 and different values for inner iterate communication load.

Inner iterate Communication
communication load (second) overhead (second) SAE

 .
 .
 .
 .
 .

error criterion as follows: SAE = ∑4
i=1

∑SL
t=0 |ywo

i (t) −
yw
i (t)|, where ywo

i denotes the response without com-
putational latency and yw

i the response with computa-
tional latency. For DMPC with single-level architecture
and outer iterate communication load of 1, 5, 10, 30, 50
second, the sum absolute error is 0.000091657, 14.9757,
14.6678, 13.5228, 8.1418, respectively. For DMPC with
two-level architecture for communication and outer iter-
ate communication load of 50 second and different val-
ues for inner iterate communication, the sum absolute
error is shown in Table 2. As is clear from this table,
even with inner iterate communication load of 50 second
(that is, when the ratio of inner iterate communication
load versus outer iterate communication load is one), the
SAE of the DMPC with two-level architecture is much
smaller than that of the DMPC with single-level archi-
tecture. Note that for this case the communication over-
head of the DMPC with two-level architecture is bigger
than that of theDMPCwith single-level architecture. This

indicates that in the presence of computational latency,
the response of the DMPC with two-level architecture
is much closer to the ideal response without computa-
tional latency. Figure 11 illustrates the response of the
DMPC with two-level architecture for communication
without and with computational latency (due to commu-
nication overhead and computation overhead) when the
inner iterate communication load is 50 second. As is clear
from this figure, although the communication overhead
for this case is 550 second; and hence, the computational
latency is high (563 second), the response with latency
is very close to the ideal response without latency. The
above analysis illustrates that for the simulated condi-
tions, the DMPC with two-level architecture for commu-
nication has a better performance in disturbance rejec-
tion over whole communication overhead except in very
small overhead where the performance of two methods
are almost identical.

6. Conclusion and direction for future research

Feasibility, convergence and optimality of the distributed
optimisation method of Stewart, Venkat, Rawlings,
and Wright (2010) that exploits a two-level architec-
ture for communication were mathematically proved.
For an automated irrigation channel, the satisfactory
performance of the DMPC method that is based on
this distributed optimisation method, was illustrated and
compared with the performance of the DMPC of Stewart,

0 500 1000 1500 2000
-1

0

1
water level for the 1st pool

Minute

w
a

te
r

le
v
e

l(
c
m

)

0 500 1000 1500 2000
-2

0

2
water level for the 2nd pool

Minute

w
a

te
r

le
v
e

l(
c
m

)

0 500 1000 1500 2000
-2

0

2
water level for the 3rd pool

Minute

w
a

te
r

le
v
e

l(
c
m

)

0 500 1000 1500 2000
-1

0

1
water level for the 4th pool

Minute

w
a

te
r

le
v
e

l(
c
m

)

Figure . DMPC with two-level architecture for communication with computational latency of second. Solid line: without computa-
tional latency, dotted line: with latency.

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

INTERNATIONAL JOURNAL OF CONTROL 1741

Venkat, Rawlings, Wright, and Pannocchia (2010) that
exploits a single-level architecture for communication. It
was illustrated that the former method has a better per-
formance by better managing communication overhead.
For future, it is interesting to address the problem of iden-
tifying disjoint neighbourhoods for a given distributed
system with arbitrary topology so that the fastest con-
vergence rate to the optimal solution is achieved. Also,
it is interesting to compute the communication overhead
for a given system and develop techniques for exchanging
information between sub-systems and neighbourhoods
with minimum communication overhead. It is also inter-
esting to study the effects of parameters π js and λis in
the quality of response. These problems are left for future
investigation.

Acknowledgments

Alireza Farhadi would like to thank Michael Cantoni and Peter
Dower for hosting him at the University of Melbourne, Aus-
tralia, from 2011 to 2013. Alireza Farhadi also would like to
thank M. Cantoni, P. Dower, E. Weyer, M. Kearney and Rubi-
con SystemsAustralia formanyhelpful discussion onAustralia’s
automated irrigation channels.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work is supported by the research office of Sharif Univer-
sity of Technology.

References

Anand, A., Joshua, G., Sundaramoorthy, S., & Samavedham, L.
(2011). Coordinating multiple model predictive controllers
for multi-reservoir management. In Proceedings of the 2011
IEEE International Conference On Networking, Sensing and
Control (pp. 1–6). Delft: IEEE.

Billingsley, P. (1986). Probability and measure. New York, NY:
John Wiley and Sons.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization.
New York, NY: Cambridge University Press.

Cantoni, M., Weyer, E., Li, Y., Ooi, S.K., Mareels, I., & Ryan, M.
(2007). Control of large-scale irrigation networks. Proceed-
ings of the IEEE, 95(1), 75–91.

Chaudhry, M.H. (1993). Open-channel flow. Englewood Cliffs,
NJ: Prentice-Hall.

Christofides, P.D., Scattolini, R., Munoz de la Pena, D., & Liu,
J. (2013). Distributed model predictive control: A tuto-
rial review and future research directions. Computers and
Chemical Engineering, 51, 21–41.

Doan, M.D., Giselsson, P., & Keviczky, T. (2013). A distributed
accelerated gradient algorithm for distributed model pre-
dictive control of hydro power valley. Control Engineering
Practice, 21(11), 1594–1605.

Farhadi, A., Cantoni, M., & Dower, P.M. (2013). Compu-
tation time analysis of a distributed optimization algo-
rithm applied to automated irrigation networks. InProceed-
ings of the 52nd IEEE Conference on Decision and Control
(pp. 2193–2199). Florence: IEEE.

Farhadi, A., Dower, P.M., & Cantoni, M. (2013). Computa-
tion time analysis of centralized and distributed optimiza-
tion algorithms applied to automated irrigation networks.
In Proceedings of 2013 Australian Control Conference (pp.
263–269). Perth: IEEE.

Giselsson, P., & Rantzer, A. (2014). On feasibility, stability and
performance in distributed model predictive control. IEEE
Transactions on Automatic Control, 59(4), 1031–1036.

Goldsmith, A. (2005).Wireless communications. New York, NY:
Cambridge University Press.

Igreja, J., Cadete, F., & Lemos, J. (2011). Application of dis-
tributed model predictive control to a water delivery canal.
In Proceedings of the 19th Mediterranean Conference On
Control and Automation (pp. 682–687). Corfu: IEEE.

Kearney,M., &Cantoni,M. (2012).MPC-based referenceman-
agement for automated irrigation channels. In Proceed-
ings of 2012 Australian Control Conference (pp. 349–354).
Sydney: IEEE.

Liu, J., Chen, X., Munoz de la Pena, D., & Christofides, P.D.
(2012). Iterative distributed model predictive control of
nonlinear systems: Handling asynchronous, delayed mea-
surements. IEEE Transactions on Automatic Control, 52(2),
528–534.

Liu, J., Munoz de la Pena, D., & Christofides, P.D. (2010). Dis-
tributedmodel predictive control of nonlinear systems sub-
ject to asynchronous and delayed measurements. Automat-
ica, 46, 52–61.

Lofberg, J. (2004). Yalmip: A toolbox for modeling and
optimization in MATLAB. In Proceedings of the CACSD
Conference. Taipei. Retrieved from http://users.isy.liu.se/
johanl/yalmip

Maestre, J.M.,Munoz de la Pena,D., Camacho, E.F., &Alamo, T.
(2011).Distributedmodel predictive control based on agent
negotiation. Journal of Process Control, 21, 685–697.

Negenborn, R.R. (2007). Multi-agent model predictive control
with applications to power networks (PhD thesis). Delft Uni-
versity of Technology, The Netherlands.

Negenborn, R.R., Van Overloop, P.J., Keviczky, T., & De Schut-
ter, B. (2009). Distributed model predictive control of irri-
gation canals. Networks and Heterogeneous Media, 4(2),
359–380.

Ooi, S.K., Krutzen,M.P.M., &Weyer, E. (2005).Onphysical and
data driven modelling of irrigation channels. Elsevier Con-
trol Engineering Practice, 13, 461–471.

Scattolini, R. (2009). Architecture for distributed and hierarchi-
cal model predictive control – a review. Journal of Process
Control, 19(5), 723–731.

Stewart, B.T., Venkat, A.N., Rawlings, J.B., &Wright, S.J. (2010).
Hierarchical cooperative distributed model predictive con-
trol. In Proceedings of American Control Conference (pp.
3963–3968). Baltimore, MD: IEEE.

Stewart, B.T., Venkat, A.N., Rawlings, J.B., Wright, S.J., & Pan-
nocchia, G. (2010). Cooperative distributed model predic-
tive control. Systems and Control Letters, 59, 460–469.

Weyer, E. (2001). System identification of an open water chan-
nel. Elsevier Control Engineering Practice, 9, 1289–1299.

Zhou, K., Doyle, J.C., & Glover, K. (1996). Robust and optimal
control. Upper Saddle River, NJ: Prentice Hall.

D
ow

nl
oa

de
d

by
 [

Sh
ar

if
 U

ni
ve

rs
ity

 o
f

T
ec

hn
ol

og
y]

 a
t 2

1:
10

 1
6

Ju
ly

 2
01

6

http://users.isy.liu.se/johanl/yalmip

	Abstract
	1.Introduction
	1.1.Motivation and background
	1.2.Paper contributions
	1.3.Notations
	1.4.Paper organisation

	2.Distributed optimisation method with hierarchical architecture for communication
	3.Feasibility, convergence and optimality results
	4.Distributed model predictive control method
	5.Automated irrigation channels and undesired upstream transient error propagation and amplification phenomenon
	5.1.An automated irrigation channel
	5.2.Simulation results

	6.Conclusion and direction for future research
	Acknowledgments
	Disclosure statement
	Funding
	References

